Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 472: 134345, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38696956

RESUMEN

Biochar is widely accepted as a green and effective amendment for remediating heavy metals (HMs) contaminated soil, but its long-term efficiency and safety changes with biochar aging in fields. Currently, some reviews have qualitatively summarized biochar aging methods and mechanisms, aging-induced changes in biochar properties, and often ignored the potential eco-environmental risk during biochar aging process. Therefore, this review systematically summarizes the study methods of biochar aging, quantitatively compares the effects of different biochar aging process on its properties, and discusses the potential eco-environmental risk due to biochar aging in HMs contaminated soil. At present, various artificial aging methods (physical aging, chemical aging and biological aging) rather than natural field aging have been applied to study the changes of biochar's properties. Generally, biochar aging increases specific surface area (SSA), pore volume (PV), surface oxygen-containing functional group (OFGs) and O content, while decreases pH, ash, H, C and N content. Chemical aging method has a greater effect on the properties of biochar than other aging methods. In addition, biochar aging may lead to HMs remobilization and produce new types of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), environmentally persistent free radicals (EPFRs) and colloidal/nano biochar particles, which consequently bring secondary eco-environmental risk. Finally, future research directions are suggested to establish a more accurate assessment method and model on biochar aging behavior and evaluate the environmental safety of aged biochar, in order to promote its wider application for remediating HMs contaminated soil.

2.
Water Res ; 256: 121582, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608621

RESUMEN

Ion-adsorption rare earth element (REE) deposits distributed in the subtropics provide a rich global source of REEs, but in situ injection of REEs extractant into the mine can result in leachate being leaked into the surrounding groundwater systems. Due to the lack of understanding of REE speciation distribution, particularly colloidal characteristics in a mining area, the risks of REEs migration caused by in situ leaching of ion-adsorption REE deposits has not been concerned. Here, ultrafiltration and asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) were integrated to characterize the size and composition of REEs in leachate and groundwater from mining catchments in South China. Results show that REEs were associated with four fractions: 1) the <1 kDa fraction including dissolved REEs; 2) the 1 - 100 kDa nano-colloidal fraction containing organic compounds; 3) the 100 kDa - 220 nm fine colloids including organic-mineral (Fe, Mn and Al (oxy)hydroxides and clay minerals); 4) the >220 nm coarse colloids and acid soluble particles (ASPs) comprising minerals. Influenced by the ion exchange effect of in situ leaching, REEs in leachate were mostly dissolved (79 %). The pH of the groundwater far from the mine site was increased (5.8 - 7.3), the fine organic-mineral colloids (46 % - 80 %) were the main vectors of transport for REEs. Further analysis by AF4 revealed that the fine colloids can be divided into mineral-rich (F1, 100 kDa - 120 nm) and organic matter-rich (F2, 120 - 220 nm) populations. The main colloids associated with REEs shifted from F1 (64 % ∼ 76 %) to F2 (50 % ∼ 52 %) away from the mining area. For F1 and F2, the metal/C molar ratio decreased away from the mining area and middle to heavy REE enrichment was presented. According to the REE fractionation, organic matter was the predominant component capable of binding REEs in fine colloids. Overall, our results indicate that REEs in the groundwater system shifted from the dissolved to the colloidal phase in a catchment affected by in situ leaching, and organic-mineral colloids play an important role in facilitating the migration of REEs.


Asunto(s)
Coloides , Agua Subterránea , Metales de Tierras Raras , Minerales , Minería , Contaminantes Químicos del Agua , Agua Subterránea/química , Coloides/química , China , Minerales/química , Adsorción
3.
Environ Pollut ; 331(Pt 2): 121891, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236585

RESUMEN

A clear understanding of the allocation of Cd to grains is essential to manage the level of Cd in cereal diets effectively. Yet, debate remains over whether and how the pre-anthesis pools contribute to grain Cd accumulation, resulting in uncertainty regarding the need to control plant Cd uptake during vegetative growth. To this end, rice seedlings were exposed to 111Cd labeled solution until tillering, transplanted to unlabeled soils, and grown under open-air conditions. The remobilization of Cd derived from pre-anthesis vegetative pools was studied through the fluxes of 111Cd-enriched label among organs during grain filling. The 111Cd label was continuously allocated to the grain after anthesis. The lower leaves remobilized the Cd label during the earlier stage of grain development, which was allocated almost equally to the grains and husks + rachis. During the final stage, the Cd label was strongly remobilized from the roots and, less importantly, the internodes, which was strongly allocated to the nodes and, to a less extent, the grains. The results show that the pre-anthesis vegetative pools are an important source of Cd in rice grains. The lower leaves, internodes, and roots are the source organs, whereas the husks + rachis and nodes are the sinks competing with the grain for the remobilized Cd. This study provides insight into understanding the ecophysiological mechanism of Cd remobilization and setting agronomic measures for lowering grain Cd levels.


Asunto(s)
Oryza , Contaminantes del Suelo , Grano Comestible/química , Cadmio/análisis , Marcaje Isotópico , Hojas de la Planta/química , Suelo , Contaminantes del Suelo/análisis
4.
Environ Sci Technol ; 57(17): 6922-6933, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071813

RESUMEN

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.


Asunto(s)
Helechos , Proteínas de Transporte de Membrana , Metales de Tierras Raras , Membrana Celular , Helechos/metabolismo , Zinc/metabolismo
5.
Environ Pollut ; 327: 121608, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37044257

RESUMEN

Microbial co-metabolism is crucial for the efficient biodegradation of polycyclic aromatic hydrocarbons (PAHs); however, their intrinsic mechanisms remain unclear. To explore the co-metabolic degradation of PAHs, root organic acids (ROAs) (phenolic ROAs: caffeic acid [CA] and ferulic acid [FA]; non-phenolic ROAs: oxalic acid [OA]) were exogenously added as co-metabolic substrates under high (HFe) and low (LFe) iron levels in this study. The results demonstrated that more than 90% of PAHs were eliminated from the rhizosphere of Phragmites australis. OA can promote the enrichment of unrelated degrading bacteria and non-specific dioxygenases. FA with a monohydroxy structure can activate hydroxylase; however, it relies on phytosiderophores released by plants (such as OA) to adapt to stress. Therefore, non-specific co-metabolism occurred in these units. The best performance for PAH removal was observed in the HFe-CA unit because: (a) HFe concentrations enriched the Fe-reducing and denitrifying bacteria and promoted the rate-limiting degradation for PAHs as the enzyme cofactor; (b) CA with a dihydroxyl structure enriched the related degrading bacteria, stimulated specific dioxygenase, and activated Fe to concentrate around the rhizosphere simultaneously to perform the specific co-metabolism. Understanding the co-metabolic degradation of PAHs will help improve the efficacy of rhizosphere-mediated remediation.


Asunto(s)
Dioxigenasas , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Rizosfera , Hierro/metabolismo , Poaceae/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Dioxigenasas/metabolismo , Compuestos Orgánicos/metabolismo , Ácidos , Contaminantes del Suelo/metabolismo , Microbiología del Suelo
6.
J Hazard Mater ; 452: 131254, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965356

RESUMEN

Dicranopteris linearis is the best-known hyperaccumulator species of rare earth elements (REEs) and silicon (Si), capable of dealing with toxic level of REEs. Hence, this study aimed to clarify how D. linearis leaves cope with excessive REE stress, and whether Si plays a role in REE detoxification. The results show that lanthanum (La - as a representative of the REEs) stress led to decreased biomass and an increase of metabolism related to leaf cell wall synthesis and modification. However, the La stress-induced responses, especially the increase of pectin-related gene expression level, pectin polysaccharides concentration, and methylesterase activity, could be mitigated by Si supply. Approximately 70% of the Si in D. linearis leaves interacted with the cell walls to form organosilicon Si-O-C linkages. The Si-modified cell walls contained more hydroxyl groups, leading to a more efficient REE retention compared to the Si-free ones. Moreover, this [Si-cell wall] matrix increased the pectin-La accumulation capacity by 64%, with no effect on hemicellulose-La and cellulose-La accumulation capacity. These results suggest that [Si-pectin] matrix fixation is key in REE detoxification in D. linearis, laying the foundation for the development of phytotechnological applications (e.g., REE phytomining) using this species in REE-contaminated sites.


Asunto(s)
Metales de Tierras Raras , Tracheophyta , Silicio , Pectinas , Lantano
7.
New Phytol ; 237(6): 2238-2254, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513604

RESUMEN

Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown. Here, we showed that Arabidopsis thaliana MYB DOMAIN PROTEIN30 (MYB30) is an important transcription factor that integrates light signaling and postsubmergence stress responses. MYB DOMAIN PROTEIN30 protein abundance decreased upon submergence and accumulated during reoxygenation. Under submergence conditions, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a central regulator of light signaling, caused the ubiquitination and degradation of MYB30. In response to desubmergence, however, light-induced MYB30 interacted with MYC2, a master transcription factor involved in jasmonate signaling, and activated the expression of the VITAMIN C DEFECTIVE1 (VTC1) and GLUTATHIONE SYNTHETASE1 (GSH1) gene families to enhance antioxidant biosynthesis. Consistent with this, the myb30 knockout mutant showed increased sensitivity to submergence, which was partially rescued by overexpression of VTC1 or GSH1. Thus, our findings uncover the mechanism by which the COP1-MYB30 module integrates light signals with cellular oxidative homeostasis to coordinate plant responses to postsubmergence stress.


Asunto(s)
Arabidopsis , Estrés Fisiológico , Factores de Transcripción , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico , Regulación de la Expresión Génica de las Plantas , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Hazard Mater ; 443(Pt B): 130253, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36327843

RESUMEN

The increasing demand for Rare Earth Elements (REEs) and the depletion of mineral resources motivate sustainable strategies for REE recovery from alternative unconventional sources, such as REE hyperaccumulator. The greatest impediment to REE agromining is the difficulty in the separation of REEs and other elements from the harvested biomass (bio-ore). Here, we develop a sulfuric acid assisted ethanol fractionation method for processing D. linearis bio-ore to produce the pure REE compounds and value-added chemicals. The results show that 94.5% of REEs and 87.4% of Ca remained in the solid phase, and most of the impurities (Al, Fe, Mg, and Mn) transferred to the liquid phase. Density functional theory calculations show that the water-cation bonds of REEs and Ca cations were broken more easily than the bonds of the cations of key impurities, causing lower solubility of REEs and Ca compounds. Subsequent separation and purification led to a REE-oxide (REO) product with a purity of 97.1% and a final recovery of 88.9%. In addition, lignin and phenols were obtained during organosolv fractionation coupled with a fast pyrolysis process. This new approach opens up the possibility for simultaneous selective recovery of REEs and to produce value-added chemicals from REE bio-ore refining.


Asunto(s)
Metales de Tierras Raras , Tracheophyta , Metales de Tierras Raras/química , Agua
9.
Ying Yong Sheng Tai Xue Bao ; 33(11): 3116-3126, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36384846

RESUMEN

Antibiotic resistance genes (ARGs) in soil pose a major challenge to global environment and health. The development of effective technologies to reduce their negative effects has implications for maintaining soil health and human health. Biochar would be a suitable control material due to its characteristics of high carbon content, large surface area, excellent adsorption capacity, and economic advantages. There are three mechanisms underlying its negative effects on the abundance of ARGs: 1) adsorption of certain pollutants (e.g., antibiotics and heavy metals) to reduce the co-selective pressure of ARGs; 2) alteration of microbial composition through altering soil physico-chemical properties, and thereby limiting the ability of bacteria to undergo horizontal transfer of ARGs; 3) direct impairment of horizontal gene transfer by the adsorption of horizontal transfer vectors such as plasmids, transposons, and integrons. However, the negative effect of biochar depends on the source of material, pyrolysis process, and its amount added. Furthermore, field aging of biochar may reduce its ability to block ARGs. Endogenous contaminants of biochar, such as polycyclic aromatic hydrocarbons and heavy metals, may cause the enrichment of specific antibiotic-resistant bacteria in the environment or induce horizontal gene transfer. In further studies, suitable biochar should be selected according to soil environments, and biochar aging control measures should be taken to improve its retarding effect on ARGs.


Asunto(s)
Metales Pesados , Suelo , Humanos , Suelo/química , Antibacterianos/farmacología , Microbiología del Suelo , Farmacorresistencia Microbiana/genética , Metales Pesados/análisis , Bacterias/genética
10.
Plant Cell ; 34(12): 4857-4876, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36053201

RESUMEN

In multicellular eukaryotes, autophagy is a conserved process that delivers cellular components to the vacuole or lysosome for recycling during development and stress responses. Induction of autophagy activates AUTOPHAGY-RELATED PROTEIN 1 (ATG1) and ATG13 to form a protein kinase complex that initiates autophagosome formation. However, the detailed molecular mechanism underlying the regulation of this protein complex in plants remains unclear. Here, we determined that in Arabidopsis thaliana, the regulatory proteins 14-3-3λ and 14-3-3κ redundantly modulate autophagy dynamics by facilitating SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA (SINAT)-mediated proteolysis of ATG13a and ATG13b. 14-3-3λ and 14-3-3κ directly interacted with SINATs and ATG13a/b in vitro and in vivo. Compared to wild-type (WT), the 14-3-3λ 14-3-3κ double mutant showed increased tolerance to nutrient starvation, delayed leaf senescence, and enhanced starvation-induced autophagic vesicles. Moreover, 14-3-3s were required for SINAT1-mediated ubiquitination and degradation of ATG13a. Consistent with their roles in ATG degradation, the 14-3-3λ 14-3-3κ double mutant accumulated higher levels of ATG1a/b/c and ATG13a/b than the WT upon nutrient deprivation. Furthermore, the specific association of 14-3-3s with phosphorylated ATG13a was crucial for ATG13a stability and formation of the ATG1-ATG13 complex. Thus, our findings demonstrate that 14-3-3λ and 14-3-3κ function as molecular adaptors to regulate autophagy by modulating the homeostasis of phosphorylated ATG13.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Autofagia/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Hazard Mater ; 435: 128959, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483265

RESUMEN

In situ leaching of ion-adsorption rare earth element (REE) deposits has released large amounts of REE-containing wastewater. However, the origin, speciation, distribution and migration of REEs in aqueous systems of the mining catchment are poorly understood. Groundwater, surface water, in situ leachates and weathered granite soil samples were collected from a catchment affected by mining activities in South China. The REE concentrations in groundwater (6.18 × 10-3-0.49 µmol L-1) and surface water (2.54-44.05 µmol L-1) decreased from upstream to downstream. REEs in groundwater were detected in organic matter associated (FA-REE) colloids, while the REE3+ and REE(SO4)+ were converted to REE(CO3)+ and FA-REE colloids from leachates and upstream surface water to downstream. The REE patterns of leachates and upstream groundwater (light and middle REE enrichment) resembled those of soil, but showed heavy REE enrichment due to FA-REE colloids in the downstream. REE in surface water were derived from middle REE enriched leachate. The Ce and Eu anomalies in the water samples indicated the REE origin (i.e., mining activities) and the hydrological variations (e.g., oxidation environment and water-rock interaction). Our results reveal the origin and fate of REE in aqueous systems of ion-adsorption REE mining catchments.


Asunto(s)
Monitoreo del Ambiente , Metales de Tierras Raras , China , Monitoreo del Ambiente/métodos , Minería , Suelo , Agua
12.
Sci Total Environ ; 828: 154361, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35288140

RESUMEN

The exploitation of ion-adsorption rare earth element (REE) deposits has resulted in large quantities of abandoned mine tailings, which pose significant risks to the surrounding environment. However, the natural evolutional patterns at early successional stages and related biogeochemical dynamics (e.g. nutrient and REE cycling) on such mine tailings remains poorly understood. To this end, a chronosequence of REE mine tailings abandoned for up to 15 years was investigated in a post-mining site in south China. Our results showed that biocrusts were the earliest colonizers on these tailings, reaching a peak of 10% of surface coverage after 10 years of abandonment. Later on, after 15 years, the biocrusts began to be replaced by pioneer plants (e.g. Miscanthus sinensis), suggesting a rather rapid succession. This ecological succession was accompanied by obvious changes in soil nutrients and microbial community structure. Compared to bulk soils, both the biocrusts and rhizospheric soils favored an accumulation of nutrients (e.g. P, S, N, C). Notably, the autotrophic bacteria (e.g. Chloroflexi and Cyanobacteria) with C and N fixation abilities were preferentially enriched in biocrusts, while heterotrophic plant growth promoting bacteria (e.g. Pseudoocardiaceae and Acidobacteriales) were mainly present in the rhizosphere. Moreover, the biocrusts showed a remarkably high concentration of REEs (up to 1820 mg kg-1), while the rhizospheric soils tended to decrease REE concentrations (~400 mg kg-1) in comparison with bulk soils, indicating that the REEs could be redistributed by biological processes. Principal component analysis and mantel tests showed that the concentrations of nutrients and REEs were the most important factors affecting the microbial communities in biocrusts, rhizospheric and bulk soils. In sum, based on the observation of nutrient accumulation and pollutant (i.e. REE) dynamics in the initial successional stages, this work provides a feasible theoretical basis for future restoration practices on REE mine tailings.


Asunto(s)
Metales de Tierras Raras , Contaminantes del Suelo , Metales de Tierras Raras/análisis , Minería , Nutrientes/análisis , Plantas , Rizosfera , Suelo/química , Contaminantes del Suelo/análisis
13.
Sci Total Environ ; 822: 153304, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35090923

RESUMEN

Basalt-derived soils are widespread worldwide. Such soils contain high levels of heavy metals like chromium (Cr), which is a serious environmental concern. However, little is known regarding the enrichment and speciation of Cr during the basalt weathering process. Therefore, two basalt-derived soil profiles (Nitisol and Ferralsol) in the Leizhou Peninsula, south tropical China, were investigated to explore the redistribution and transformation of Cr during basalt weathering. All profiles could be divided into three layers: rocks, saprolites, and soils. The Nitisol and Ferralsol profiles exhibited strong (kaolinization) and extreme (laterization) degrees of weathering, respectively. Results showed that Cr concentrations in the saprolites (234 to 315 mg·kg-1) were higher than those in basalt rocks (139 to 159 mg·kg-1), indicating that Cr was enriched with the continuous loss of Si and other mobile macro-elements. While high levels of Cr were also enriched in the soils (178 to 430 mg·kg-1) accompanied with Fe. However, in the upper soils of the Ferralsol profile, the acidity and organic matter could promote the leaching of Cr. Geochemical fractions and EPMA mapping showed that chromite and olivine were the main Cr-bearing minerals in basalt, but Fe-oxides (e.g., goethite and hematite) contained the highest portion of Cr in weathered saprolites and soils. The availability of Cr in the soil was extremely low due to the high stability of Cr bound to Fe-oxides. However, the decreasing contents of Cr bound to Fe-oxides in the upper soils of the Ferralsol profile indicated that Cr could also be released during Fe leaching. In conclusion, the weathering of basalt can lead to the enrichment of Cr in Fe-(hydro)oxides, which are the main controlling minerals for Cr mobility in basalt-derived soils. Further research is needed to evaluate the effect of Fe-(hydro)oxide formation and dissolution on the release of soil Cr.


Asunto(s)
Cromo , Contaminantes del Suelo , China , Cromo/análisis , Monitoreo del Ambiente , Silicatos , Suelo/química , Contaminantes del Suelo/análisis
14.
Bull Environ Contam Toxicol ; 108(4): 779-785, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34562127

RESUMEN

It has been well known that the free ion concentration of metals plays a vital role in metal bioavailability. However, measurement of this fraction is still not easy over years of development. Nowadays, rare earth elements (REEs) are drawing more attentions as an emerging contaminant due to their wide applications in our daily life. To analyze the free ion concentration of neodymium (Nd), we adopted ion-exchange technique (IET) to investigate the changes on Nd free ion concentration in the presence of fulvic acid (FA). With the dynamic mode of IET analysis, the concentrations of Nd free ion were in the range of 0.85-36.8 × 10-8 M at the total Nd concentration of 5 × 10-7 M when FA varied from 0.4 to 10 M. However, these concentrations were 3-58 times higher than the one calculated by WHAM 7.0, which may be due to the particulate Nd spontaneously formed in solution. With single particle ICP-MS analysis, we found 0.25%-2.36% of Nd was in the form of colloids when the total Nd concentrations varied from 8.5 × 10-9 to 4.7 × 10-7 M, with the average particle sizes in the range of 26.5-39.2 nm. The presence of FA significantly decreased the number of Nd colloids, but increased the average particle size. Under the TEM, we found that Nd colloids were amorphous, with the size less than 200 nm. The present study provided a relatively new perspective on REE speciation in water. The natural organic matters not only affect the free ion concentration of Nd, but also influenced the size and numbers of Nd colloids in solution.


Asunto(s)
Metales de Tierras Raras , Neodimio , Benzopiranos , Intercambio Iónico , Neodimio/análisis
15.
Sci Total Environ ; 809: 152075, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34890651

RESUMEN

The exploitation of ion-adsorption rare earth element (REE) deposits in South China has left large areas of mine tailings. However, limited remediation practices on these tailings have been reported, and how the remediation strategies and economic plants cultivation affect the biogeochemical cycles of nutrients, REEs and Al remains unclear. The aim of the present study was to investigate the effects of the combination of the addition of soil amendment and the root development and activity of a fiber plant ramie (Boehmeria nivea L.) on the availability and distribution of nutrients, as well as of REEs and other potentially toxic elements (e.g. Al) in the soil-plant system. The results showed that the application of organic amendment and ramie planting induced a significant increase in soil pH, total carbon (C), nitrogen (N), and other nutrient (e.g. P and Ca) concentrations, while led to a decrease of 80-90% and 60-90% in soil extractable REE and Al concentrations respectively. Matrices of correlation showed that soil pH, total C, N, and P concentrations were among the most important factors controlling the availability of soil REEs and Al, and root characteristics (e.g. fine root length). The total C, N, P and extractable nutrient concentrations, and electrical conductivity were higher in the rhizosphere soils of ramie than those in the bulk soils. Moreover, more than 60% of the quantity of REE and Al in the whole ramie plant was stored within the thick roots. These results showed that, in addition to amendment, the effects induced by the roots of ramie could further improve soil properties through C input, nutrient mobilization and toxic element stabilization. Our study concludes that ramie planting with organic amendment is a promising phytostabilization strategy for the remediation of REE mine tailings in South China.


Asunto(s)
Boehmeria , Contaminantes del Suelo , Adsorción , Nutrientes , Suelo , Contaminantes del Suelo/análisis
16.
Sci Total Environ ; 805: 150335, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818777

RESUMEN

Organic acids play an important role in metal tolerance, uptake, and translocation in hyperaccumulators. Phytolacca americana is a rare earth element (REE) hyperaccumulator, but the underlying mechanisms on REE tolerance and accumulation mediated by organic acids are poorly understood. Here, we reported for the first time the strategy of P. americana to enhance REE tolerance and accumulation through organic acids from root external secretion to internal biosynthesis. Different from the exclusion of heavy metal by organic acid in the typical plants, the results showed that oxalate secretion (0.3-0.6 µmol h-1 g-1 root DW) induced by yttrium (Y) could not prevent Y from entering the roots, resulting in excess Y uptake by P. americana. Yttrium stress also stimulated the accumulation of malate and citrate by 1.4- and 2.0-folds in the root cortex. Exogenous malate and citrate promoted the redistribution of Y from the root cell walls to the shoot by 30% and 21%, respectively. Based on comparative transcriptome analysis, 6-fold up-regulation was observed in PaNIP1;2, whose homology AtNIP1;2 is responsible for the transport of Al-malate in Arabidopsis. These results suggested that the promoted formation of Y-malate complexes within the roots potentially accelerated the transport of Y from P. americana roots to shoots through PaNIP1;2. Our study revealed the potential mechanism of organic acids in the external exclusion and internal detoxification and translocation of REE in P. americana roots, which provided a basis for improving the efficiency of REE phytoextraction.


Asunto(s)
Arabidopsis , Metales de Tierras Raras , Phytolacca americana , Compuestos Orgánicos , Raíces de Plantas
17.
J Hazard Mater ; 424(Pt A): 127269, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34607026

RESUMEN

Phenolic root exudates (PREs) released from wetland plants are potentially effective for accelerating the biodegradation of alkylphenols, yet the inherent behavior is still unclear. In this study, two representative root exudates (REs), namely p-coumaric acid (PREs) and oxalic acid (non-PREs) were exogenously added as specific and non-specific co-metabolic substrates, respectively, to elucidate the quantification of each removal pathway and degradation mechanism of co-metabolism for alkylphenols (i.e. p-tert-butylphenol (PTBP)) from synthetic wastewater. The results showed that soil adsorption (31-37%), microbial degradation (27-37%), and plant uptake (16-41%) are the main removal pathways of PTBP by PREs in the Phragmites australis rhizosphere. Both REs enriched anaerobic functional community (anaerobic ammonium oxidation bacteria and denitrifying bacteria) and promoted the usage of PTBP as carbon source and/or electron donor. The activity of non-specific enzyme (polyphenol oxidase) was enhanced by RE which owning a significant positive correlation with bacterial abundance, whereas only PREs strengthened the activity of specific enzyme (monophenol oxidase) catalyzing the phenolic ring hydroxylation of PTBP followed by a dehydrogenation route. Moreover, exogenous PREs significantly improved the growth of degrading-related bacteria (Sphingomonas and Gemmatimonas), especially in unplanted soils with high activity of dioxygenase catalyzing the cleavage pathway of PTBP, instead of plant presence.


Asunto(s)
Rizosfera , Aguas Residuales , Biodegradación Ambiental , Exudados y Transudados , Raíces de Plantas , Poaceae , Microbiología del Suelo
18.
Chemosphere ; 282: 131096, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34470158

RESUMEN

The plant Phytolacca americana L. simultaneously hyperaccumulates manganese (Mn) and rare earth elements (REEs), but the underlying mechanisms are largely unknown. In this study, P. americana and the corresponding rhizosphere soil samples were collected from an ion-adsorption REE mine area in China, and the elemental composition and soil properties were analyzed in order to explore the relationship between metal accumulation and soil properties. The results show that P. americana accumulates high concentrations of REEs (up to 1040 mg kg-1), Mn (up to 10400 mg kg-1) and aluminum (Al) (up to 5960 mg kg-1) in leaves. The REE concentrations in leaves were positively correlated with those of Al, Fe and Zn, while light REE concentrations were negatively correlated with P concentrations (p < 0.05). The soil properties explained 81.7%, 72.9% and 67.1% of REEs, Mn and Al accumulated in P. americana, respectively. The variation of REE accumulation in P. americana was primarily explained by plant available P (24.4%), pH (12.9%), TOC (9.4%) and total P (7.7%). The accumulation of Mn was primarily explained by plant available REEs (42.9%) and available Al (13.1%) while Al in P. americana was primarily explained by soil pH (14.4%). This study suggests the potential by regulation of soil properties in improving the efficiency of phytoextraction for REEs by hyperaccumulators.


Asunto(s)
Metales de Tierras Raras , Phytolacca americana , Contaminantes del Suelo , Aluminio , Biodegradación Ambiental , Manganeso , Raíces de Plantas , Suelo
19.
Metallomics ; 13(4)2021 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-33765153

RESUMEN

Hyperaccumulators have exceptional phloem translocation capability for heavy metals. This study aims at quantifying the mobility and accumulation of Ni and Co via the phloem in the model hyperaccumulator Noccaea caerulescens. "Phloem loading capability (PLC)," which is calculated by the "Metal content in phloem sap/Metal content in leaves," was introduced to evaluate the metal phloem mobility, while "Phloem mobility value (PMV)" was used for the normalization of PLC, which sets the PLC of Sr as PMV 0 and that of Rb as 100. The results showed that the PMVs of Ni and Co were 63 and 47, respectively. And the phloem mobility of Rb, Ni, Co, and Sr could be graded as highly mobile, mobile, intermediate, and immobile accordingly. The phloem stream can supply up to 19.1% and 16.0% of the total Ni and Co accumulated in the young leaves, respectively, while for Rb and Sr, the phloem contributes to 29% and 1.4% of the total Rb or Sr, indicating phloem contribution of certain metal is directly linked with its mobility. The results of this study raise the importance of phloem translocation on metal accumulation in shoots and provide insights on the metal cycling process in hyperaccumulators.


Asunto(s)
Brassicaceae/metabolismo , Cobalto/metabolismo , Níquel/metabolismo , Floema/metabolismo , Raíces de Plantas/metabolismo , Brassicaceae/crecimiento & desarrollo , Cobalto/análisis , Níquel/análisis , Raíces de Plantas/crecimiento & desarrollo
20.
Ann Bot ; 128(1): 17-30, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33615337

RESUMEN

BACKGROUND: The fern Dicranopteris linearis is a hyperaccumulator of rare earth elements (REEs), aluminium (Al) and silicon (Si). However, the physiological mechanisms of tissue-level tolerance of high concentrations of REE and Al, and possible interactions with Si, are currently incompletely known. METHODS: A particle-induced X-ray emission (µPIXE) microprobe with the Maia detector, scanning electron microscopy with energy-dispersive spectroscopy and chemical speciation modelling were used to decipher the localization and biochemistry of REEs, Al and Si in D. linearis during uptake, translocation and sequestration processes. RESULTS: In the roots >80 % of REEs and Al were in apoplastic fractions, among which the REEs were most significantly co-localized with Si and phosphorus (P) in the epidermis. In the xylem sap, REEs were nearly 100 % present as REEH3SiO42+, without significant differences between the REEs, while 24-45 % of Al was present as Al-citrate and only 1.7-16 % Al was present as AlH3SiO42+. In the pinnules, REEs were mainly concentrated in necrotic lesions and in the epidermis, and REEs and Al were possibly co-deposited within phytoliths (SiO2). Different REEs had similar spatial localizations in the epidermis and exodermis of roots, the necrosis, veins and epidermis of pinnae of D. linearis. CONCLUSIONS: We posit that Si plays a critical role in REE and Al tolerance within the root apoplast, transport within the vascular bundle and sequestration within the blade of D. linearis.


Asunto(s)
Helechos , Metales de Tierras Raras , Aluminio , Humanos , Silicio , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...